
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2012

Message Passing Algorithm for Different Problems Sum, Mean, Message Passing Algorithm for Different Problems Sum, Mean,

Guide and Sorting in a Rooted Tree Network. Guide and Sorting in a Rooted Tree Network.

Sabaresh Nageswara Rao Maddula
University of Nevada, Las Vegas, maddulas@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the OS and Networks Commons, and the Theory and Algorithms Commons

Repository Citation Repository Citation
Maddula, Sabaresh Nageswara Rao, "Message Passing Algorithm for Different Problems Sum, Mean,
Guide and Sorting in a Rooted Tree Network." (2012). UNLV Theses, Dissertations, Professional Papers,
and Capstones. 1683.
https://digitalscholarship.unlv.edu/thesesdissertations/1683

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1683?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1683&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

1

MESSAGE PASSING ALGORITHMS FOR DIFFERENT PROBLEMS SUM, MEAN,

GUIDE AND SORTING IN A ROOTED TREE NETWORK.

by

 Sabaresh N Maddula

A Thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

August 2012

www.manaraa.com

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Sabaresh N. Maddula

entitled

Message Passing Algorithms for Different Problems Sum, Mean, Guide

and Sorting in a Rooted Tree Network.

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Ajoy K. Datta, Committee Chair

Lawrence Larmore, Committee Member

Juyeon Jo, Committee Member

Emma Regentova, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

August 2012

www.manaraa.com

iii

ABSTRACT

MESSAGE PASSING ALGORITHMS FOR DIFFERENT PROBLEMS SUM,

MEAN, GUIDE AND SORTING PROBLEMS IN A ROOTED TREE NETWORK.

by

SABARESH N MADDULA

Dr . Ajoy K. Datta, Examination Committee Chair

School of Computer Science

University of Nevada, Las Vegas

 In this thesis, we give message passing algorithms in distributed environment for

five different problems of a rooted tree having n nodes. In the first algorithm, every

node has a value; the root calculates the sum of those values, and sends it to all the nodes

in the network. In the second algorithm, the root computes the value of mean of values

of all the nodes, and sends it to all nodes of the network. The third algorithm calculates

the guide pairs. Guide pair of a node x is an ordered pair (pre_index(x), post_index(x)),

where pre_index(x) and post_index(x) are the rank of x in the preorder and reverse

postorder traversal of T. In the fourth algorithm, we compute the rank of all the nodes in

the tree by considering the weight (value) present at every node. Finally, in the fifth

algorithm, values present in the nodes are sorted in level order.

www.manaraa.com

iv

ACKNOWLEDGEMENTS

 Firstly I would like to thank my guide, mentor and advisor Dr. Ajoy K Datta who

is guiding, helping and supporting me throughout my thesis and entire masters program. I

am indebted to him for his guidance and support.

 I would like to thank Dr. Lawrence L Larmore, Dr.Ju-Yeon Jo, Dr. Emma

Regentova for being as my committee members.

 I would also like to thank Computer Science for supporting me financially with

the Graduate Assistantship.

 Finally I would thank my parents and family members for their support.

www.manaraa.com

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ... viii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND ... 3

 2.1 DISTRIBUTED SYSTEM .. 3

 2.2 MESSAGE PASSING SYSTEM ... 4

 2.2.1 MESSAGE PASSING APPLICATIONS .. 4

 2.2.2 MODES OF MESSAGE PASSING ... 5

 2.2.3 MESSAGE PASSING AND LOCKS ... 6

 2.3 MESSAGE PASSING SYSTEM VS. SHARED MEMORY SYSTEMS 6

CHAPTER 3 SUM ALGORITHM ... 8

 3.1 GENERAL OVERVIEW OF SUM ... 9

 3.2 VARIABLES OF SUM ... 9

 3.3 FUNCTIONS OF SUM ... 10

 3.4 LEGITIMATE CONFIGURATION OF SUM ... 10

 3.5 MESSAGES OF SUM .. 10

 3.6 EXPLANATION OF SUM ... 11

 3.7 SUM ALGORITHM STEPS .. 12

CHAPTER 4 MEAN ALGORITHM ... 13

 4.1 GENERAL OVERVIEW OF MEAN ... 13

 4.2 VARIABLES OF MEAN .. 13

 4.3 FUNCTIONS OF MEAN .. 14

 4.4 MESSAGES OF MEAN .. 14

www.manaraa.com

vi

 4.5 LEGITIMATE CONFIGURATION OF MEAN ... 15

 4.6 EXPLANATION OF MEAN ... 15

 4.7 MEAN ALGORITHM STEPS .. 16

CHAPTER 5 GUIDE ALGORITHM ... 17

 5.1 GENERAL OVERVIEW OF GUIDE ... 18

 5.2 VARIABLES OF GUIDE .. 20

 5.3 MESSAGES OF GUIDE ... 21

 5.4 EXPLANATION OF GUIDE .. 21

 5.5 GUIDE ALGORITHM STEPS .. 24

CHAPTER 6 RANK ALGORITHM ... 26

 6.1 GENERAL OVERVIEW OF RANK .. 26

 6.2 VARIABLES OF RANK ... 27

 6.3 FUNCTIONS OF RANK ... 27

 6.4 MESSAGES OF RANK ... 31

 6.5 EXPLANATION OF RANK ... 32

 6.6 RANK ALGORITHM STEPS ... 38

CHAPTER 7 LEVEL ORDER ALGORITHM ... 43

 7.1 GENERAL OVERVIEW OF LEVER ORDER SORTING 43

 7.2 VARIABLES OF LEVER ORDER SORTING ... 45

 7.3 FUNCTIONS OF LEVER ORDER SORTING ... 46

 7.4 MESSAGES OF LEVER ORDER SORTING .. 50

 7.5 EXPLANATION OF LEVER ORDER SORTING .. 51

 7.6 LEVER ORDER SORTING ALGORITHM STEPS .. 53

CHAPTER 8 CONCLUSION .. 59

APPENDIX A DIAGRAMS OF SUM ALGORITHM .. 60

www.manaraa.com

vii

APPENDIX B DIAGRAMS OF MEAN ALGORITHM 67

APPENDIX C DIAGRAMS OF GUIDE ALGORITHM 74

APPENDIX D DIAGRAMS OF RANK ALGORITHM 81

APPENDIX E DIAGRAMS OF LEVEL ORDER SORTING ALGORITHM 99

BIBILOGRAPHY ... 118

VITA ... 119

www.manaraa.com

viii

LIST OF FIGURES

Figure 5.0.1 : An ordered tree labeled with guide pair values 18

Figure 6.7.1 : Error correction diagrams .. 36

Figure 6.7.2 : Changes the states to correction configuration 37

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

 In this thesis we give message passing algorithms in distributed environment for

five different problems of a rooted tree having n nodes. Initially the topology may not

be a tree. But we make an assumption that the tree is constructed using a self-

stabilized silent algorithm. Any of these five algorithms do not assume the knowledge of

n. We don't have any assumption that the nodes in the tree have unique ID's. But we

assume that the tree has a distinguished root process Root. We consider that every

process P has a variable P.Parent, which points its neighbor process. If the node is a root

node P.Parent points to itself.

 The First algorithm SUM, all the process in the tree has a value V(P), it may be

calculated by some algorithm or given by some application. Sum of all these values are

calculated by the root i.e PV(P) by sending all these messages to the root. This

algorithm SUM can be used to combine the values which has an associative and

commutative operations.

 Our second algorithm MEAN calculates the mean of all the values present at

every node of the tree i.e 1/n PV(P). Here root finds the number of nodes in the tree

along with the sum and calculates the mean value.

 The third algorithm GUIDE computes the guide pair value and it makes use of

SUM algorithm for calculating the guide pair value. Guide pair for a process is written as

P.guide = (P.pre_index, P.post_index). Figure 5.1 shows a rooted tree labeled with guide

www.manaraa.com

2

pairs. Tree can be traversed easily by using the guide pair values. Partial order is defined

on the guide pair values: we say (i,j) (k,l) if i k and j l. For a process Q to be a

member of subtree p rooted at P if and only if P.guide Q.guide.

 Our fourth algorithm RANK computes the rank of every node in the tree based on

the values V(P) present at every node in the tree. RANK uses the GUIDE algorithm

guide pair values for traversing the tree.

 The fifth algorithm LEVEL ORDER SORTING computes the rank of every node

in the tree based on the values present at every node in the tree. Here the sorting is done

in level order. This algorithm makes use of GUIDE algorithm for traversing the tree.

www.manaraa.com

3

CHAPTER 2

BACKGROUND

 In this chapter, we will give a brief explanation of Distributed Systems. In the

first section, we will give explanation of distributed systems. Later in the second section,

we will discuss about the message passing system.

2.1 Distributed Systems

 A distributed system is a collection of some computing devices that can

communicate with each other. It includes a wide range of computer systems, these

systems range from a VLSI chip, to a tightly-coupled shared memory multiprocessor, to a

local-area cluster of workstation, to the Internet. The motivation for using a distributed

system may include inherently distributed computations, resource sharing, access to

geographically remote data and resources, enhanced reliability, increased

performance/cost ratio, and scalability. Every computer has a memory-processing unit,

and the computers are connected by a communication network. These processors need to

communicate with each other in order to achieve some level of coordination to complete

a task. The different types of communication among these processors; Message Passing

and Shared Memory. Shared memory systems are those in which there is a shared

address space throughout the system. Communication among processors takes place via

shared data variables and control variables. In Message passing systems, the processors

communicate by sending and receiving messages through the links in the network.

www.manaraa.com

4

2.2 Message Passing System

 Here we will present a brief overview of message passing interface in distributed

computing. Message passing is a method of communication used in parallel computing ,

interprocess communication and object-oriented programming. In this system process or

nodes in the network communicate by sending and receiving messages to each other.

Synchronization can be achieved by waiting for messages.

 In message passing paradigm of communication sender can send messages to

more number of recipients. The message can be sent in different forms signals, remote

method invocation (RMI), data packets. We need to consider different conditions while

designing a message passing system.

 Reliability of messages i.e. knowing if the message is sent or not.

 Guaranteed delivery of messages in order.

 Different scenarios are to be considered such as the messages are passed one-to-

one(unicast), one-to-many(multicast), many-to-one(client to server), many-to-

many(AllToAll).

 Different modes of communication whether it is a synchronous mode of

communication or asynchronous mode of communication.

2.2.1 Message Passing Applications

 Remote Method Invocation(RMI) and Distributed Object Systems like Cobra,

Java RMI, SOAP, CTOS, .Net Remoting systems etc are different message passing

www.manaraa.com

5

systems. This message passing system can be called as "shared nothing" system as this

systems abstraction hides the underlying state changes which are used in message

sending.

 Message passing model based programming languages generally define messages

as the(normally asynchronous) sending(copy) of data to the user(processer, node) at the

other end. This kind of messaging is used in Web Services by SOAP. This is higher level

version of datagram with an exception that the size of the message cannot be larger than

size of the packet. They may or may not be reliable, secure, durable and transacted.

2.2.2 Modes of Message Passing

 Synchronous and Asynchronous modes are the two different modes available in

message passing systems. In synchronous mode of communication both the sender and

receiver have to wait for each other for the transfer of messages. This mode of

communication have different advantages.

 Reasoning about the program can be simplified in that there is synchronizing

point between the sender and the receiver.

 In synchronized mode of communication buffer is not necessary.

 In asynchronous mode of communication for message passing systems sender and

the receiver need not wait for the messages. Sender can send the messages without the

receiver waiting for the messages. This mode of communication in message passing

systems have some disadvantages. If the buffer in asynchronous system is full this will

www.manaraa.com

6

cause some problems. If the messages being sent are lost the communication will no

longer be reliable in this system. If there is a situation weather to block the sender or

discard the new messages then this may lead to deadlock. We can also implement

synchronous mode of communication over the asynchronous mode of communication by

making the messages to wait.

2.2.3 Message Passing and locks

 Access to resources in asynchronous or concurrent systems can be controlled

using this message passing systems. The resources can shared memory, database table

rows, files in a disk. A process must initially acquire the lock in order to access the

resources. If a process acquires a lock all other process will be blocked and they cannot

access the resources anymore. Once the process with the lock is done with the usage of

resources then it will release the lock and make the resources available to other processes.

This message passing is one of the main alternative solution for mutual exclusion.

2.3 Message Passing System vs. Shared Memory Systems

 Message passing and Shared memory are different communication systems in

distributed environment. Their performance characteristics will vary in different ways. In

Message passing system the task switching and per-process memory overhead is low, but

the overhead of message passing itself is greater than for a procedure call. There are other

overwhelming performance factors which shows better performance of message passing

system. When we consider the scalability factor if there are more number of systems in a

network then message passing system works better in that environment. We can

apparently see that message passing system is the preferred way to increase the number

www.manaraa.com

7

of processor managed in a multi processor system. The memory is being shared in a

shared memory and multiple process share the same data. This may cause many

concurrency issues. But in message passing system all the process communicate using

messages and this keeps the process separated. Process cannot modify each other's data.

www.manaraa.com

8

CHAPTER 3

3.SUM ALGORITHM

 SUM, assumes each process in the tree is given a value V (P), it can be given by

any application, or it can be computed by some other algorithm. SUM then computes

pV(P) , the sum of all the values at all the processes. The algorithm SUM can actually be

used to combine the values of any type which has an associative and commutative

operation. For example, if every process is given a value belonging to any ordered type,

we could use an appropriate variant of SUM to compute the maximum or the minimum

value in T.

 Suppose that there is a connected network with a single designated process Root,

where all other processes are anonymous. Every process is given a value V(P). This value

V (P), can either be initialized at every process or it can be calculated. We can allow the

application layer to change V (P) for any P at any time and this V(P) need not be stable.

 We are given a commutative associative operator on values, which we call

addition and write as “+.” Of course, this operator could actually be ordinary addition; or

it could be multiplication, minimum, or maximum, to name a few well-known

possibilities. The sum problem is to compute the “sum” of the values of all the processes

in the network, which we write as V (P), and to inform every process of this sum.

 SUM algorithm in this section solves the sum problem, by finding the correct

value of pV(P) within O(diam) rounds, provided the values of the processes remain

unchanged during that time. SUM is also self-stabilizing and silent, and works under the

unfair daemon. If SUM has converged, every process knows the sum. If the application

www.manaraa.com

9

layer changes V (P) for one or more processes P, then SUM will “wake up” and

recalculate the sum, then SUM will become silent again after every process in the tree

know the new sum.

3.1 General Overview of SUM

 SUM consists of a bottom-up wave that computes the sum of the values of the

processes in each subtree of the BFS tree, followed by a top-down wave that informs

every process what the value of the sum is. Initially all the leaf nodes starts a bottom-up

wave by sending a message V(P) to its parent. All the other processes calculate

Subtreesum(P) and send subtreesum value to its parents. After the process receiving the

values from all its children it finds the Subtreesum(P) and sends to its parent and this

wave continues until it reaches the Root. Then root has the value P.sumall i.e the sum of

all values V(P) in the network.

 Now root starts a broadcast wave by sending a message P.sumall i.e V(P) to all

its children and this wave sends the sum of all V(P) i.e SUM to all the process in the

network.

3.2 Variables of SUM

Each process P has the following variables.

1. P.subtreesum. The correct value of P.subtreesum is the sum of the values of V (Q) for

all

Q Tp , the subtree of the BFS tree rooted at P.

www.manaraa.com

10

2. P.sumall . The correct value of P.sumall is the sum of the values of V (Q) for all

processes

Q in the network.

We will assume that P can read the local names of its neighbors, so that if Q N(P), P

can tell

whether Q.parent = P.

3.3 Functions of SUM

 Each process P can compute the following functions.

1. Chldrn(P) = {Q N(P) : Q.parent = P}

2. Subtreesum(P) = V (P) + Q Chldrn(P) Q.subtreesum

If P is a leaf of the BFS tree, then Subtreesum(P) = V (P).

3. Sumall (P) = P.subtreesum if P = Root

 P.parent.sumall otherwise

3.4 Legitimate Configuration of SUM

A configuration of SUM is defined to be legitimate if the

following conditions hold.

1. All values of subtreesum are correct, that is P.subtreesum = Q TpV(Q).

2. All values of sumall are correct, that is P.sumall = V (Q).

3.5 Messages of SUM

 send P.subtreesum. Each process P sends P.subtreesum to its parent where

 Subtreesum(P) = V (P) + Q Chldrn(P) Q.subtreesum

www.manaraa.com

11

 send P.subtreesize. Each process P sends P.subtreesize to its parent where

 Subtreesize(P) = 1 + Q Chldrn(P) Q.subtreesize

 P.receive Q.subtreesum. Process P receives V(P) from all its children.

 send P.sumall(P). Starting from Root every process sends the sumall to

all its children where

 Sumall (P) = P.subtreesum if P = Root

 P.parent.Sumall otherwise

3.6 Explanation of Sum

 Every node of the rooted tree Tp has a value V(P). Starting from the nodes every

node sends its subtreesum to its parent. This is done in the form of a convergecast wave

starting from the leaf nodes. This convergecast wave ends after reaching the Root node.

 Now the Root node has the values of subtreesum of the tree. Root calculates the

value of the Sumall(P) for the tree i.e Sumall(P) = Subtreesum(P). Root sends the

sumall value to all the children. This is send in the form of a broadcast wave. This wave

ends when it reaches the leaf nodes. Then every node in the tree has the Sum Value.

www.manaraa.com

12

3.7 SUM ALGORITHM STEPS

A1 P=Leaf

Subtreesum(P)=V(P) P send P.subtreesum to P.Parent

A2 Q Cp send Q.subtreesum to Q.Parent

 P.receive Q.subtreesum

 P.receivedQ True

A3 Q Cp if P.receivedQ=True

 ubtreesum(P)=V(P)+ Q Cp Q.subtreesum

 send P.subtreesum to P.Parent

A4 P=Root Sumall(P)=Subtreesum(P)

 Q Cp send P.sumall

to Q

A5 P Root receive P.Parent.sumall

 Sumall(P)=P.Parent.sumall

www.manaraa.com

13

CHAPTER 4

4 . MEAN ALGORITHM

 MEAN, which computes the average of all the values present at different process.

Every process in the network knows the value V(P), the network has n processes . Here

we will compute the mean value of V , namely 1/n ∑V (P), where n is the size of the

network.

4.1 General Overview of MEAN

 MEAN algorithm starts with a convergecast wave starting from the leafs sends

messages subtreesum, subtreesize to its parents i.e. V(P), 1 to its parent. Now all the

process after receiving the messages from its children calculates Subtreesum(P),

Subtreesize(P) values and send those values to its parent and this wave continues until it

reaches the root. Now the root has the values of subtreesum and subtreesize for the entire

tree. Then Root calculates the value Mean P.subtreesum/P.subtreesize.

 Now a broadcast wave starting from the root sends a message meanvalue to all its

children and those process sends the meanvalue message to its children. This wave

continues until it reaches the leaves. Now all the process in the tree has the value of Mean

for the entire tree.

4.2 Variables of MEAN

Each process P has the following variables.

1. P.subtreesum, as in SUM.

www.manaraa.com

14

2. P.subtreesize. The correct value of P.subtreesize is the number of processes in the

subtree of the BFS tree rooted at P.

3. P.meanvalue. The correct value of P.meanvalue is the mean value of all the processes

in the

network.

We will assume that P can read the local names of its neighbors, so that if Q N(P), P

can tell

whether Q.parent = P.

4.3 Functions of MEAN

 Each process P can compute the following functions.

1. Chldrn(P) = {Q N(P) : Q.parent = P}

2. Subtreesum(P) = V (P) + Q Chldrn(P) Q.subtreesum

If P is a leaf of the BFS tree, then Subtreesum(P) = V (P).

3. Subtreesize(P) = 1 + Q Chldrn(P) Q.subtreesize

If P is a leaf of the BFS tree, then Subtreesize(P) = 1.

4. Meanvalue(P) = P.subtreesum/P.subtreesize if P = Root

 P.parent.meanvalue otherwise

4.4 Messages of MEAN

 send P.subtreesum. Each process P sends subtreesum to its parent where

 Subtreesum(P) = V (P) + Q Chldrn(P) Q.subtreesum

 send P.subtreesize. Each process P sends subtreesize to its parent where

 Subtreesize(P) = 1 + Q Chldrn(P) Q.subtreesize

www.manaraa.com

15

 send P.meanvalue. Each process P sends meanvalue to all its children where

 Meanvalue(P) = P.subtreesum/P.subtreesize

4.5 Legitimate Configuration of MEAN

 A configuration of MEAN is defined to be legitimate if the following conditions hold.

1. All values of subtreesum are correct, that is P.subtreesum = Q TpV(P)

2. All values of subtreesize are correct, that is P.subtreesize is the number of processes in

Tp .

3. All values of meanvalue are correct, that is P.meanvalue = 1/n Q TV(Q).

4.6 Explanation of Mean

 Every node of the rooted tree Tp has a value V(P). Starting from the leaf nodes

every node sends its subtreesum and subtreesize to its parent. This is done in the form of

a convergecast wave starting from the leaf nodes. This convergecast wave ends after

reaching the Root node.

 Now the Root node has the values of subtreesum and subtreesize of the tree. Root

calculates the value of the Mean for the tree i.e

Meanvalue(P)=Subtreesum(P)/Subtreesize(P). Root sends the Mean value to all the

children. This is send in the form of a broadcast wave. This wave ends when it reaches

the leaf node. Then every node in the tree has the Mean Value.

www.manaraa.com

16

4.7 MEAN ALGORITHMS STEPS

A1 P=Leaf P.subtreesum=V(P)

 P.subtreesize=1

 Q send P.subtreesum to P.Parent

 send P.subtreesize to P.Parent

A2 Q Cp send Q.subtreesum to Q.Parent

 send Q.subtreesize to Q.Parent

 P.receive Q.subtreesum

 P.receive Q.subtreesize

 P.receivedQ True

A3 Q Cp Subtreesum(P)=V(P)+ Q Cp Q.subtreesum

 if P.receivedQ=True Subtreesize(P)=1+ Q Cp Q.subtreesize

 send P.subtreesum to P.Parent

 send P.subtreesize to P.Parent

A4 P=Root Meanvalue(P) = Subtreesum(P)/Subtreesize(P)

 Q Cp send P.meanvalue to Q

A5 P Root receive P.Parent.meanvalue

 Meanvalue(P)=P.Parent.meanvalue

www.manaraa.com

17

5. GUIDE ALGORITHM

 A rooted tree T is an ordered tree, if the children of every node are ordered

together with an order (called a left-to-right order). Let P1, P2, . . . Pm be the children of

the root of T in left-to-right order, and let Ti be the subtree rooted at Pi.

Preorder traversal of a tree T is defined, recursively, as follows.

1. Visit the root of T .

2. For each i from 1 to m in increasing order, visit the nodes of Ti in preorder.

Post-order traversal of a tree T is similarly defined.

1. For each i from 1 to m in increasing order, visit the nodes of Ti in postorder.

2. Visit the root of T .

Pre-order traversal is top-down, while post-order is bottom-up. However, we can also

traverse T

is reverse post-order, which is top-down, as follows.

1. Visit the root of T .

2. For i from m to 1 in decreasing order, visit the nodes of Ti in reverse postorder.

In preorder traversal of T if a node x is the ith node visited, we say that the preorder rank

of x is i. The reverse postorder rank of x is j if the node x is the jth node visited in reverse

post-order. We write pre_index(x) for the preorder rank and post_index(x) reverse

postorder rank of x, respectively, We define the guide pair of x to be the ordered pair

guide(x) = (pre index (x), post index (x)). Figure 5.0.1 shows an ordered tree where each

process is labeled with its guide pair.

www.manaraa.com

18

If (i, j) and (k, l) are guide pairs, we write (i, j) (k, l) if i k and j l. Thus, the set of

guide

pairs is partially ordered.

(fig 5.0.1) An ordered tree, labeled with guide pairs.

5.1 General overview of GUIDE.

 We now describe the algorithm, GUIDE, which computes the guide pairs of all

processes in a rooted tree network. In the first phase of GUIDE is to compute the sizes of

all subtrees, by applying Algorithm MEAN. Later in the second phase is to assign index

to every children in the tree. Each child must know the index assigned to it by its parent.

www.manaraa.com

19

This index is assigned in left to right order. Each process then computes the guide pair

values starting from the root. Guide pair value of the root is (1,1).

 In the first phase of GUIDE all the node in the computes the subtreesize by

receiving the messages subtreesize from all its children i.e all the node starting from the

leaf nodes sends message subtreesize to their parent. GUIDE uses MEAN algorithm for

the calculation of subtreesize. After the parent receiving the message from its children it

calculates Subtreesize(P). The values of pre_index and post_index of root are set to 1.

 In the second phase, GUIDE computes the guide pair for each process. GUIDE

uses subtreesize values for computing the guide pair values. Now every node assigns

indexes to all its children and the children must know their indexes. Guide pair value of

root is set to (1,1) GUIDE computes the values P.chld_pre_predecessors[i] and

P.chld_post_predecessors[i] for each i in the range 1 . . . P.num_chld.

Num_Preorder_Predecessors(i) is calculated by adding the subtreesize of leftmost

subtree of P.parent. Each process P then computes its guide pair value

(P.parent.chld_pre_predecessors[j] + 1, P.parent.chld_post_predecessors[j] + 1) where

j is the index of child P in its left-to-right order.

 After GUIDE computing the values P.child_pre_predecessors and

P.child_post_predecessors. If the index of the child is 1 then

Num_Preorder_Predecessors(P) = P.parent.pre_index , this value is directly sent to the

child and for all other children to P.parent.chld_pre_predecessors[1]. For all other

children parent sends the message P. chld_pre_predecessor[i],

P.chld_post_predecessor[i] to its children where i is the order of the children. And the

guide pair of the node is calculated by

www.manaraa.com

20

P.pre_index  1+P.parent.chld_pre_predecessors[P.my_order]

P.post _index  1+P.parent.chld_post_predecessors[P.my_order]

5.2 Variables of GUIDE

1. P.subtreesize, is the number of processes present in a tree Tp rooted at P .

Let Chldrn(P) = {Q N(P) : Q.parent = P}, the children of P in the tree T . These

children

are then ordered left-to-right, using the neighbor ordering of P, making T an ordered tree.

The

following variables enable each process to know the local state of the ordered tree.

2. P.num_chld, an integer in the range 0 . . . δp, whose correct value is the number of

children

of P in the BFS tree T .

3. P.child[i] N(P) U { } for 1 i δp . If 1 i P.num_chld, then P.child[i] is

the ith

child in P’s local ordering of N(P), while P.child[i] = if i > P.num_chld.

4. P.my_order. If P ≠ Root, then the correct value of P.my_order is i if P.parent.child[i]

= P,

while the correct value of Root.my_order is .

5. P.pre_index , P.post_index , integers, whose correct values are the preorder and

reverse postorder ranks of P, respectively. We will write P.guide = (P.pre_index ,

P.post_index).

www.manaraa.com

21

6. P.chld_pre_predecessors[i], P.chld_post_predecessors[i],integer, for 1 i

P.num_chld.

The correct value of P.chld_pre_predecessors is the number of predecessors of P.child[i]

in

the preorder traversal of T . The correct value of P.chld_post_predecessors is the number

of

predecessors of P.child[i] in the reverse postorder traversal of T .

5.3 Messages

 send subtreesize. Each process P sends subtreesize to its parent where

 subtreesize = 1 + Q Chldrn(P) Q.subtreesize

 send P. chld_pre_predecessor[i]. Each process P sends the value

chld_pre_predecessor[i] to its children where i is the index of children. It is used

to calculate the uide pair value.

 send P.chld_post_predecessor[i]. Each process P sends the value

chld_post_predecessor[i] to its children where i is the index of children. It is used

to calculate the guide pair value.

5.4 Explanation of GUIDE

 Here we give a clear explanation how GUIDE computes the values P.pre_index

for all the process. In the similar way GUIDE also computes the P.post_index. If P is the

ith process visited in a preorder visitation of T . Then the correct value of P.pre_index is

i. GUIDE computes the number of predecessors of P, i.e. the number of processes

www.manaraa.com

22

visited before P is visited. Let us call that number Num_Preorder_Predecessors(P). After

the GUIDE computing the Num_Preorder_Predecessors(i) value it sends this value to the

children of respective index where is the index and after the children receiving the

message it calculates the P.pre_index

i.e. P.pre_index  Num_Preorder_Predecessors(P).

 If P is the root process then Num_Preorder_Predecessors(Root) = 0, otherwise

the value Num_Preorder_Predecessors(P) is calculated by the parent and stores the

value in the variable P.parent.chld_pre_predecessors[i], where P is the ith child of its

parent in left-to-right order. For computing all these values of its children, P.parent must

have computed its own value of pre_index , it should also know all its subtree sizes. If i

= 1, then Num_Preorder_Predecessors(P) = P.parent.pre_index , because here its parent

is the immediate predecessor of its leftmost child in the preorder traversal. So it can

directly send the value P.parent.pre_index = Num_Preorder_Predecessors(P).Thus

P.parent.chld_pre_predecessors[1] is equal to P.parent.pre_index. This value can be

directly sent to the first child. But for P.parent.chld_pre_predecessors[2] is obtained by

adding the size of the leftmost subtree of P.parent to P.parent.chld_pre_predecessors[1],

since all members of that subtree are predecessors of the second child of P.parent.

In general, the number of predecessors of P is equal to P.parent.pre_index of its parent

plus the sum of the sizes of the leftmost i −1 subtrees of its parent. Where i is the index.

The values of P.post_index are computed from right to left, in a similar manner. After

computing both the values P.parent.chld_pre_predecessors[i],

P.parent.chld_post_predecessors[i]. It sends these values to its children respectively.

Then P computes the guide pair value by computing the below values.

www.manaraa.com

23

P.pre_index  P.parent.chld_pre_predecessors[j] + 1

P.post_index  P.parent.chld_post_predecessors[j] + 1

www.manaraa.com

24

5.5 GUIDE Algorithm Steps

A1 P=Leaf subtreesize = 1

 send P.subtreesize to P.Parent

A2 Q Cp receive Q.subtreeize

 P.receivedQ  True

A3 Q Cp if P.receivedQ=True

 Subtreesize(P)=1+ Q Cp Q.subtreesize

A4 P=Root P.pre_index  1

 P.post_index  1

A5 P P.chld_pre_predecessors[1]  P.pre_index

 send P.chld_pre_predecessors[1]

 P.chld_post_predecessors[P.num_chld]  P.post_index

 send P.chld_post_predecessor[P.num_child]

A6 2 i P.num_child P.chld_pre_predecessor[i] 

 P.child_pre_predecessors[i-1] + P.child[i-1].subtreesize

 send P. chld_pre_predecessor[i]

www.manaraa.com

25

A7 Q Cp receive

 P.parent.chld_pre_predecessors[P.my_order]

 Received Q = True

A8 received Q  True P.pre_index 

 1+P.parent.chld_pre_predecessors[P.my_order]

A9 1 i < P.num_child P.chld_post_predecessor[i]<-

 P.child_post_predecessors[i+1] + P.child[i+1].subtreesize

 send P.chld_post_predecessor[i]

A10 Q Cp Receive

 P.parent.chld_post_predecessors[P.my_order]

 Received Q = True

A11 If P.received Q True P.post _index 

 1+P.parent.chld_post_predecessors [P.my_order]

www.manaraa.com

26

CHAPTER 6

6. RANK ALGORITHM

 Rank Ordering problem solves the ordering problem of a rooted tree. All the

nodes in the tree T has a value P.weight. Based on this weight we need to find the rank of

each process P if P1, P2 . . . Pn is the list of processes of T sorted according to their

weight, the i is the rank of Pi.

6.1 Overview of RANK

 When a new epoch starts all the Root node starts a broadcast wave by sending a

message status = 1 to all its children and changes its status to 1 from status = 0 or 4.

When this broadcast wave has reached the leaf nodes then a new convergecast starts from

leaf nodes sending message status = 2 to its parent. This wave reaches the root node and

it ends there. All the Rank computation goes when process are having status = 2. After

the computation of Rank is done i.e after last down package is sent then the Root node

starts a broadcast wave by sending a message status = 3 to all its children. When this

wave reaches the leaf nodes. A new convergecast wave starts from the leaf nodes by

sending a message status = 4 to its parents. A new epoch will begin after the

convergecast wave.

 When the status variable of all the process is 2. The actual computation of rank

will take place. Initially all the leaf node process creates up-packages which is a

combination of weight and guide pair value. Starting from the leaf nodes all the process

sends this packages up until it reaches the root. There will be guard that makes sure that

small weight packages goes first. After the package reaches the root. Root assigns a rank

www.manaraa.com

27

to the process and includes in the down-package. The will be assigned with the help of a

counter present in the root node. The combination of rank and guide pair is down-

package. When this package reaches the home process i.e. the process having the guide

pair value same as in the down-package that process will get assigned the rank. The

process rank will be the rank present in the down-package.

6.2 Variables of RANK

Each process P has the following variables.

1. All the variables of GUIDE.

2. P.up_pkg, either of package type, or (undefined). If P.up_pkg is defined, its home

process is some Q Tp.

3. P.down_pkg, either of package type, or (undefined). If P.down_pkg is defined, its

home process is some Q Tp .

4. P.started, Boolean, which indicates that P has already generated an up-package during

this epoch. (Of course, P.up_pkg may or may not still contain that up-package.)

5. P.up_done, Boolean, which indicates Tp contains no active up-package. (Of course,

active p-packages whose home processes are in Tp could exist at processes above P.)

6. P.status, an integer in the range [0 . . . 4]. Status variables are used to control the order

of computation, to correct errors.

7. Root contains an incrementing integer variable counter, which assigns the rank to

packages. It is initialized to be 0 each time a new epoch begins.

6.3 Functions of RANK.

1. Clean_State(P), Boolean, which is true if P is in an initial, or “clean,” state. Formally,

www.manaraa.com

28

 Clean_State(P) is true if all the following conditions hold:

 (a) P.up_pkg =

 (b) P.down_pkg =

(c) ¬P.started

(d) ¬P.up done

2. Status_Error(P), Boolean, which is true if P finds that its status is incorrect with those

of its neighbors. Arbitrary initialization is the main reason for status error

Status_Error(P) will eventually remain false all the time for all P. Formally, Status-

_Error(P) holds if any one of the following conditions holds.

 (a) P.status {1, 3} and P.parent.status P.status.

 (b) P.status {2, 4} and Q.status P.status for some Q Chldrn (P).

 (c) P.status 0 and P.parent.status = 0.

 (d) P.status ∉ {0, 1} and Q.status = 0 for some Q Chldrn(P).

3. Guide_Error(P), is a Boolean variable, meaning that P can detect an error in the guide

string of one of its packages. We say that a guide pair g is consistent with a process P if

either g = P.guide, or there is some Q Chldrn(P) such that g <= Q.guide.

 Formally, Guide_Error(P) is true if either of the following conditions holds:

 (a) P.up_pkg and P.up_pkg.guide is not consistent with P.

 (b) P.down_pkg and P.down_pkg.guide is not consistent with P.

4. Error(P), Boolean. Formally, Error(P) is true if any one of the following conditions

holds:

(a) Status_Error(P).

(b) ¬Clean_State(P) ^ (P.status = 1).

www.manaraa.com

29

(c) Guide_Error(P) ^ (P.status = 2).

(d) P.up_done ^ ¬P.started ^ (P.status = 2).

(e) P.up_done ^ (P.status = 2), and there is some Q Chldrn(P) such that ¬Q.up_done.

5. Start_Pkg(P) = (P.weight, P.guide), of package type, the up-package whose home

process is P, and which P initiates.

6. Up_Redundant(P), Boolean, meaning that P.up_pkg is redundant. Formally,

If P ≠ Root, then Up_Redundant(P) holds provided the following three conditions hold:

(a) P.up_pkg ≠ ,

(b) P.parent.up_pkg ≠ ,

(c) P.parent.up_pkg ≥ P.up_pkg, which means that P.parent has already copied

P.up_pkg.

Up_Redundant(Root) holds provided the following three conditions hold:

(a) Root.up_pkg ≠ ,

(b) Root.down_pkg ≠ ,

(c) Root.down_pkg.guide = Root.up_pkg.guide. This means that Root has already used its

up-package to initialize a down-package. We note that P can evaluate Up_Redundant(Q)

for any Q Chldrn(P).

7. Down_Ready(P), Boolean, meaning that P.down_pkg is redundant or undefined, and

thus P can create or copy a new down-package.

Formally, if P.down_pkg = , then Down_Ready(P) holds.

If P.down_pkg ≠ and P.down_pkg.guide ≠ P.guide, then Down_Ready(P) holds if

there is some Q Chldrn(P) such that Q.down_pkg = P.down_pkg.

www.manaraa.com

30

If P.down_pkg ≠ and P.down_pkg.guide = P.guide, then Down_Ready(P) holds if

P.rank = P.down_pkg.value, indicating that P has already copied the correct value of

P.rank.

8. Up_Done(P), Boolean, meaning that TP contains no active up-packages. The value of

Up_Done(P) is the correct value of P.up_done.

Formally, Up_Done(P) holds if the following three conditions hold:

(a) P.started = 1, meaning that P has already created an up-package.

(b) Up_Redundant(P), meaning that P.up_pkg is redundant.

(c) Q.up_done for all Q Chldrn(P), meaning that there are no active packages in any

subtree of P.

9. Can_Start(P), Boolean, meaning that P can set P.up_pkg to Start_ Pkg(P).

Formally, Can_Start(P) is true if all the following conditions hold:

(a) ¬P.started, i.e., P has not get generated an up-package.

(b) P.up_pkg ≠ or Up_Redundant(P). This means that P is not holding an active

up-package.

(c) For all Q Chldrn(P), either ¬Up_Redundant(Q) or Q.up_done. This means that P

can determine the smallest active up-package in TQ.

(d) For all Q Chldrn(P), either Q.up_pkg > Start_Pkg(P) or Q.up_done. This means

that any active up-package in TQ is greater than Start Pkg(P).

10. Can_Copy_Up(P,Q), Boolean, for Q Chldrn(P). Can_Copy_Up(P,Q) is true if P

can copy Q.up_pkg to P.up_pkg.

Formally, Can_Copy_Up(P,Q) holds if all the following conditions hold:

www.manaraa.com

31

(a) Q.up_pkg ≠ and ¬Up_Redundant(Q). This means that Q is holding an active up-

package.

(b) P.up_pkg ≠ or Up_Redundant(P). This means that P is not holding an active

up-package.

(c) For all R Chldrn(P), either ¬Up_Redundant(R) or R.up_done. This means that P

can determine the smallest active up-package in TR.

(d) For all R Chldrn(P), either R.up_pkg ≥ Q.up_pkg or R.up_done. This means that

any active up-package in TR is greater than Q.up_pkg.

(e) P.started, or Start_Pkg(P) > Q.up_pkg. This means that Start_Pkg(P) has already

gone up, or must wait for Q.up_pkg to go up first.

6.4 Messages of RANK

 send(status=0). Initially when the network has arbitrary initialization . If a

process P find the status of a process incorrect. Then P starts sending the message

send(status=0) to all its neighbours.

 send(status=1). A new epoch is initiated by the Root by changing its status to 1

and it sends a message send(status=1) to all its children. This message will end

after reaching the leaf nodes.

 send(status=2). This message is initiated by the leaf nodes and it is send to its

parent. It ends after reaching the Root node. In this epoch all the rank order

processing is done.

 send(status=3). This message is initiated by the Root nodes when all the rank

processing is done by the and this message ends when it reaches the leaf nodes.

www.manaraa.com

32

 send(up_pkg). When there is an active up_pkg for a process then it sends the

message to its parent. Guard ensures that the lower weight package is moved up.

 send(P.down_pkg). When there is an active down_pkg with a process then it

sends the message to its children.

6.5 Explination of RANK

 Initially the network is configured in a clean slate configuration i.e. for a process

P P.started = 0, P.up_done = 0, and P.up_pkg = P.down_pkg = , and counter = 0, the

weight is given by the application. The values of the rank are not given since they are

overwritten during the computation.

 Flow of packages is the heart of Rank algorithm. Every package has an ordered

pair x = (x.value, x.guide), where x.value is its weight value and x.guide is the guide pair

value which is calculated using GUIDE algorithm. Every package has its own home

process, Even if the package can be at any process in the chain between its home and the

root. The guide pair of a package will always be same as the guide pair of its home

process, but the value can either be the weight of its home process or the rank that RANK

will assign to its home process.

 Each process P initiates its flow of packages by creating an up-package whose

value is P.weight and guide pair value. Initially all the leaf nodes creates the up-package

value and send them to their parent. These packages are sent up until it reaches the root.

This flow of packages is done in a way such that packages having the smaller weight

reaches the root before the packages with larger weights. After the root receiving up-

packages in order of their weights, it creates down-packages in order same as the up-

packages. Suppose an up-package received by the root is created by the root is the ith

www.manaraa.com

33

package then root creates a ith down-package with same guide pair value in the ith up-

package. But its value will be i which will be the rank the process with that particular

home process.

 Once the root receives the up-package from a child, it creates a down-package

with the same home process as the up-package, but the value in the down-package will be

changed. It can be any number between the range 1 . . . n. There will be a counter in the

root which increments the value continuously for every down-package value. Starting

from the first package having a value 1, second package having a value 2 and so on. Root

sends this package to its children and this package will go down until it reaches home

process.

 The packages are guided to their home process with the help of their guide pair

value. Once if the root knows that it has sent all its down-packages, then a broadcast

wave is initiated which resets all the variables of T and a new epoch will be started.

 In the computation of RANK, process P sends the package to its neighbor Q, still

the package also remains at P. In the algorithm RANK, each process P can be home to at

most one package, but when the packages are sent to their neighbors' the packages are

getting redundant. We can eliminate that redundancy by defining a package variable

currently held by a process (it need not be home process, it can be any process on the

chain from its home to the root) is either active or redundant. If the package is redundant

the package can be easily overwritten but if it is active package it cannot be overwritten.

 If x is an up-package currently held by some process Q which is not the root, then

x is redundant if x has already sent the package to Q.parent. If x is an up-package

www.manaraa.com

34

currently held by the root, then x is redundant if the root has already created a down-

package with the same guide pair as x. All other packages are considered as active.

 If x is a down-package held by some process Q which is not its home process,

then Q is considered as a redundant package if it has been sent to its child. After a

process receiving its down-package that package is considered as redundant if the value

in the package and the rank are same. This indicates that P.rank is correct before

receiving its down-package or P has already received its down-package . All other down-

packages are considered as active.

 RANK is a distributed algorithm which is self-stabilizing, but not silent, it

continuously computes the rank of all the process . Each cycle of this RANK computing

is called as epoch. After each epoch is done variables except weight and rank for all the

process will be reset. This variables will be used for the new epoch. If the epoch is not

initialized arbitrarily and has a clean start, the rank value for each process will be

computed correctly. All the new epochs after this will recalculate the rank and this will be

same as in the previous calculation.

 But if it configuration of network is initialized arbitrarily, the rank of the process

may be calculated incorrectly. But eventually when a new epoch get started with a clean

slate the correct values of rank can be computed.

 The entire system is controlled by status variable. When a new epoch gets started,

the root changes the status of every process from either 0 or 4 to 1 by sending a message

to its children and all the node will change the status to 1, and all variables except rank

and weight are set to their initial values. After the broadcast wave reaching the leaf

nodes, a convergecast wave gets started from the leaf node sends messages to their

www.manaraa.com

35

parents which changes the states of all the process to 2. Parent status will be changed to 2

after it receives message from all its children. Now the computation of the RANK begins

when the status variable is 2 all the above discussed process will be done. After the root

sending its last down-package, it initiates a broadcast wave by sending a message to its

children which changes the status to 3 and this wave will be continued until it reaches the

leaf nodes. The return convergecast wave then changes the status of all processes to 4 by

sending a message to its parents from leaves until it reaches the root, and when this wave

reaches the root, the new epoch begins.

 Status zero can be used for error correction. If a process finds that the current

epoch is having some error, then it changes its status to 0. This status 0 will be sent to all

its neighbors until it finds the neighbors having status 1. If this status 0 reaches the root,

then root creates a new epoch.

www.manaraa.com

36

(6.7.1) Error correction diagrams.

www.manaraa.com

37

Doubled box is used to show if there is any error in the diagram. In (a), all the process

have status 2. (b) A process is found that its state is in error state, and it changes the

status to 0. (c)Now this error state starts sending 0 message to all its neighbors (d) all the

process changed its status to 0. (e) Since root has the status value 0 it begins a new epoch

with a status 1.(g)With this new epoch the error in the process have been removed. Here

the computation of RANK begins when all the process have the status 2. When Root

knows that it is done with the RANK computation, it sends a broadcast wave with

message 3 to all its children, as shown in (k). Then a new epoch begins (q).

(a) A process has a status error. (b) Process with the error state changes its status to 0,

but this status 0 wave does not move in the up direction because its parent has status 1.

But this status wave moves down, followed by the status 1 wave. (e) Here we can see that

all the errors have remove and the RANK computation flows in a normal manner.

(6.7.2) Changes the states to correction configuration.

www.manaraa.com

38

6.6 RANK Algorithm Steps

 A1 If Error(P), Then P.Status  0

 Q nebrs(P) send(status=0)

 Q receive(status=0)

Initially the network may have any arbitrary initialization, it could be in any

configuration. If some process detects that its state is erroneous , it initiates a resetting of

the entire network by changing its status to 0 and send this message all its neighbors. This

resetting continues until it finds a neighbor with status = 1.

A2 If Root.status = 0 or 4 and Then Root.status  1

 Chldrn(Root).Status = 0 or 4

 Root is set to Clean Slate.

 Q Chldrn(P) send(status=1)

 Q recieve(status=1)

If the process in erroneous state is done with sending the status 0 to all its neighbors .If

the has the status 0, then root starts sending a status message 1 to all its children with a

broadcast wave. This broadcast wave stops after reaching the leaf nodes.

www.manaraa.com

39

A3 If P Root, P.Parent.status = 1 and Then

 Q Chldrn(P) P.receive(status =1)

 Q.Status = 0 or 4

Initial broadcast wave of a new epoch is being continued.

A4 P = leaf node, P Chldrn(Q) Then P.status  2

 If Q.status = 1 P.send (status = 2)

 Q.recieve(status =2)

A5 If P.status = 1 and Q Chldrn(P) Q.send(status=2)

Q.status = 2

 P recieve(status=2)

All the children of a process have status 2 and the process is having status 1. Then the

child sends a status message 2 to its children. This wave continues until it reaches the

Root.

A6 If P.status = 2 and Can_start(P) Then

 P.up_pkg.value  P.weight

 P.up_pkg.guide P.guide

We can write the statement of this action as P.up_pkg  Start_Pkg(P). When status

variable value changes to 2. Then the actual computation of the rank starts. Starts from

the leaf nodes the up_pkg values will be generated.

www.manaraa.com

40

A7 If P.status = 2 and Can_Copy_Up(P,Q) Then P.up_pkg

  Q.up_pkg

 Q Chldrn(P) Q.send(up_pkg)

 P.recieve(up_pkg)

Q has an active up-package whose home is some process in TQ, and package is sent to its

parent. The guard ensures that the package moved up has a lower weight than any other

active package in TP. Q sends the up_pkg by sending a message send(up_pkg) and

parent process receives the recieve(up_pkg).

A8 If P.started = 1, Up_Redundant(P) = 1 Then P.up_done

 And Q.up_done = 1  1

 Q Chldrn(P)

If P finds that TP has no active up-package, then it sets P.up_done Boolean variable to

true.

A9 If Down_Ready(Root) , Then counter++

 Root.up_Package Root.down_pkg.value

 Up_Redundant(Root)  counter

 Root.down_pkg.guide

  Root.up_pkg.guide

Root has an active up_pkg, and Root.down_pkg is either or redundant. Thus, Root is

enabled to create a new down-package to send back down to the home process of its up-

www.manaraa.com

41

package. If the value of counter is i, then Root.up_pkg is the ith up-package copied or

created by Root, and its weight is the ith smallest weight in the network, and i will

become the value of the down-package. Root sends the message send(down_pkg) to its

children and its guided to the home process.

A10 If P Root, Then P.down_pkg 

 Down_Ready(P), P.parent.down_pkg

 P.parent.down_package

 Down_Redundant(P.parent)

 P.parent.down_pkg.guide

 Q parent(P) Q.send(down_pkg)

 P receive(P.down_pkg)

P.parent holds an active down-package whose home is some process in TP. P.down_pkg

is either or redundant, then P.parent sends the message send(down_pkg). P is enabled to

receive message recieve(down_pkg).

A11 If P.down_pkg Then P.rank 

 P.down_pkg.guide = P.guide P.down_pkg.value

 P.down_pkg.value P.rank

If P.down_pkg.guide is same as P.guide then P is its home process. Then P assigns the

value to its rank from the value present in the down_pkg

A12 If Root.up_done, Then Root.status  3

www.manaraa.com

42

 Down_Ready(Root) and

 Root.rank = Root.down_pkg.value

There can still be active down-packages below Root, but no up-package is active. Thus,

Root is finished with its tasks for the current epoch.

A13 R = Root Then R.status 3

 S Chldrn(R) R.send(status=3)

 R.status = 2 receive(status=3)

 S.status = 2

 If P Root, and P.send(status = 3)

 Q Chldrn(P) Q.receive(status=3)

 P.status = 3

 Q.status = 2

Since P's parent status is 3 and P's status and its children status is 2 P's parent will send a

message send(status=3). P knows that its jobs for this epoch is done.

A14 If P.status = 3 Q.send(status=4)

 Q Chldrn(P) P.receive(status =4)

 Q.status =4

If all the children of P have status 4 its status is 3 the P's status will change to 4 . i.e all

the children of P will send a message send(status=4) then P's status will change to 4.

www.manaraa.com

43

CHAPTER 7

7. LEVEL ORDER SORTING

 Given a rooted tree T where each node x has a "value", x.value. Let r be the

root. We need to sort the values that every node is having. Finally every node will have a

value x.sortvalue, its "sorted value". The set of all sorted values is the set of all values,

but sorted in level order.

7.1 General overview of LEVEL ORDER SORTING

 In LEVEL ORDER SORTING initially we need to find the level of each node i.e

the distance of each node from the root. After each node having its level value it has to

calculate the guide pair value. Guide pair is used for traversing the tree.

 An ordered tree is a rooted tree T , together with an order (called a left-to-right

order) on the children of every node. Let P1, P2, . . . Pm be the children of the root of T

in left-to-right order, and let Ti be the subtree rooted at Pi.

The preorder traversal of T is defined, recursively, as follows.

1. Root node of T is visited first.

2. For each i from 1 to m in increasing order, visit the nodes of Ti in preorder.

Post-order traversal T is similarly defined.

1. For each i from 1 to m in increasing order, visit the nodes of Ti in postorder.

2. Root node of T is visited finally.

www.manaraa.com

44

Pre-order traversal is top-down, while postorder is bottom-up. However, we can also

traverse T

is reverse postorder, which is top-down, as follows.

1. Visit the root of T .

2. For i from m to 1 in decreasing order, visit the nodes of Ti in reverse postorder.

 If a node x is the ith node of T visited in a preorder traversal of T , we say that the

preorder rank of x is i. If a node x is the jth node of T visited in a reverse postorder

traversal of T , we say that the reverse postorder rank of x is j. Write pre_index (x) and

post_index (x) for the preorder rank and reverse postorder rank of x, respectively, We

define the guide pair of x to be the ordered pair guide(x) = (pre index (x), post index (x)).

 If (i, j) and (k, l) are guide pairs, we write (i, j) (k, l) if i k and j l. Thus, the

set of guide pairs is partially ordered. After the Guide pair has been calculated we need to

define lev_guide for every node.

x.lev_guide = (x.level, x.preindex, x.postindex).

 After calculating the lev_guide we need to pipeline the values up to the Root such

that the smaller values overtake the larger values. The values will reach the Root one at a

time. In parallel we need to pipeline the lev_guide triple to r such that the smaller values

will overtake the larger values and reach the Root. We use lexical ordering when we

pipeline the lev_guide triplets. Now each triplet value will reach the root one at a time.

Both one of the these lev_guide triplet and a value will reach the root at the time Both

the value and lev_guide triple will be combined to form descending triple consisting of

www.manaraa.com

45

one value and the guide pair. Now the Triple navigates down the tree until if finds the

matching guide pair.

7.2 Variables of LEVEL ORDER SORTING

1. P.subtreesize, is the number of processes in the tree Tp .

Let Chldrn(P) = {Q N(P) : Q.parent = P}, the children of P in the tree T . These

children are then ordered left-to-right making T an ordered tree.

2. P.num_chld, an integer in the range 0 . . . δp, whose correct value is the number of

children of P in the BFS tree T .

3. P.child[i] N(P) U { } for 1 i δp . If 1 i P.num chld, then P.child[i] is the

ith child in P’s local ordering of N(P), while P.child[i] = if i > P.num chld.

4. P.my_order. If P ≠ Root, then the correct value of P.my_order is i if P.parent.child[i]

= P, while the correct value of Root.my_order is .

5. P.pre_index , P.post_index , integers, whose correct values are the preorder and

reverse postorder ranks of P, respectively. We will write P.guide = (P.pre_index ,

P.post_index).

6. P.chld_pre_predecessors[i], P.chld_post_predecessors[i], integer, for all 1 i

P.num_chld. The correct value of P.chld_pre_predecessors is the number of predecessors

of P.child[i] in the preorder traversal of T . The correct value of

P.chld_post_predecessors is the number of predecessors of P.child[i] in the reverse

postorder traversal of T .

7. P.lev_guide, it is triplet of a node P value containing one level value and guide pair.

 P.lev_guide = (P.level, P.preindex, P.postindex).

www.manaraa.com

46

8. P.desc_pkg, it is descending triplet formed by combing the value and the lev_guide

triple.

For example, if the value x.value reaches r at the same time as the level guide triple

(y.level, y.preindex, y.postindex), the descending triple (x.value, y.preindex, y.postindex)

is created and then descends until it reaches y. When it reaches y, the assignment

y.sortvalue  x.value will

 be executed.

9. P.lev_done, Boolean, which indicates Tp contains no active up-package.

10. P.status, an integer in the range [0 . . . 4]. Status variables are used to control the

order of computation, to correct errors.

7.3 Functions of LEVEL ORDER RANKING.

1. Clean_State(P), Boolean, which is true if P is in an initial, or “clean,” state. Formally,

Clean_State(P) is true if all the following conditions hold:

(a) P.lev_lev = .

(b) P.desc_pkg =

(c) ¬P.started.

(d) ¬P.lev_done.

2. Status_Error(P), Boolean, which is true if P detects that its status is inconsistent with

those of its neighbors. Status errors are always the result of arbitrary initialization;

eventually, Status_Error(P) will remain false forever for all P. Status_Error(P) holds if

any one of the following conditions holds.

 (a) P.status {1, 3} and P.parent.status P.status.

 (b) P.status {2, 4} and Q.status P.status for some Q Chldrn (P).

www.manaraa.com

47

 (c) P.status 0 and P.parent.status = 0.

 (d) P.status ∉ {0, 1} and Q.status = 0 for some Q Chldrn(P).

3. Guide_Error(P), Boolean, meaning that P can detect an error in the guide string of one

of its packages. We say that a guide pair g is consistent with a process P if either g =

P.guide, or there is some Q Chldrn(P) such that g ≤ Q.guide.

Formally, Guide_Error(P) is true if either of the following conditions holds:

 (a) P.lev_guide and P.lev_guide.guide is not consistent with P.

 (b) P.desc_pkg and P.desc_pkg.guide is not consistent with P.

4. Error(P), Boolean. Formally, Error(P) is true if any one of the following conditions

holds:

(a) Status_Error(P).

(b) ¬Clean_State(P) ^ (P.status = 1).

(c) Guide_Error(P) ^ (P.status = 2).

(d) P.lev_done ^ ¬P.started ^ (P.status = 2).

(e) P.lev_done ^ (P.status = 2), and there is some Q Chldrn(P) such that ¬Q.lev done.

5. Start_Pkg(P) = (P.value, P.guide), of package type, the level-guide triplet whose home

process is P, and which P starts the package.

6. lev_Redundant(P), is a Boolean, indicating that P.lev_guide is redundant.

 If P ≠ Root, then lev_Redundant(P) holds provided the following three conditions hold:

(a) P.lev_guide ≠ ,

(b) P.parent.lev_guide ≠ ,

(c) P.parent.lev_guide ≥ P.lev_ guide, which means that P.parent has already copied

P.lev_guide.

www.manaraa.com

48

lev_Redundant(Root) holds provided the following three conditions hold:

(a) Root.lev_redundant ≠ ,

(b) Root.desc_pkg ≠ ,

(c) Root.desc_pkg.guide = Root.lev_guide.guide. This means that Root has already used

its level guide triplet to initialize a down-package.

We note that P can evaluate lev_Redundant(Q) for any Q Chldrn(P).

7. Desc_Ready(P), Boolean, meaning that P.desc_pkg is not defined or redundant, and

thus P can create or copy a new down-package.

Formally, if P.desc_pkg = , then Desc_Ready(P) holds.

If P.desc_pkg ≠ and P.desc_pkg.guide ≠ P.guide, then Desc_Ready(P) holds if there

is some Q Chldrn(P) such that Q.desc_pkg = P.desc_pkg.

If P.desc_pkg ≠ and P.desc_pkg.guide = P.guide, then Desc_Ready(P) holds if

P.sortedvalue = P.down_pkg.value, indicating that P has already copied the correct value

of P.rank.

8. Lev_Done(P), Boolean, meaning that TP contains no active lev_guide packages. The

value of Lev_Done(P) is the correct value of P.lev_done.

Formally, Lev_Done(P) holds if the following three conditions hold:

(a) P.started = 1, meaning that P has already created an up-package.

(b) Lev_Redundant(P), meaning that P.lev_guide is redundant.

(c) Q.lev_done for all Q Chldrn(P), meaning that there are no active packages in any

subtree of P.

9. Can_Start(P), Boolean, meaning that P can set P.lev_guide to Start_ Pkg(P).

Formally, Can_Start(P) is true if all the following conditions hold:

www.manaraa.com

49

(a) ¬P.started, i.e., P has not get generated an up-package.

(b) P.lev_guide ≠ or Lev_Redundant(P). This means that P is not holding an active

level guide triplet.

(c) For all Q Chldrn(P), either ¬Lev_Redundant(Q) or Q.lev_done. This means that P

can determine the smallest active up-package in TQ.

(d) For all Q Chldrn(P), either Q.lev_guide > Start_Pkg(P) or Q.Lev_done. This

means that any active up-package in TQ is greater than Start_ Pkg(P).

10. Can_Copy_Up(P,Q), Boolean, for Q Chldrn(P). Can_Copy_Up(P,Q) is true if P

can send Q.lev_guide to P.lev_guide.

Formally, Can_Copy_Up(P,Q) holds if all the following conditions hold:

(a) Q.lev_guide ≠ and ¬Lev_ Redundant(Q). This means that Q is holding an active

level-guide triplet.

(b) P.lev_guide ≠ or Lev_Redundant(P). This means that P is not holding an active

level-guide triplet.

(c) For all R Chldrn(P), either ¬Lev_Redundant(R) or R.lev_done. This means that P

can determine the smallest active level-guide triplet in TR.

(d) For all R Chldrn(P), either R.lev_guide ≥ Q. lev_guide or R.lev_done. This means

that any active up-package in TR is greater than Q. lev_guide.

(e) P.started, or Start_Pkg(P) > Q. lev_guide. This means that Start_Pkg(P) has already

gone up, or must wait for Q. lev_guide to go up first.

www.manaraa.com

50

7.4 Messages of LEVEL ORDER SORTING

 send subtreesize. Each process P sends subtreesize to its parent where

 Subtreesize(P) = 1 + Q Chldrn(P) Q.subtreesize

 send P. chld_pre_predecessor[i]. Each process P sends the value

chld_pre_predecessor[i] to its children where is the index of children. It is used

to calculate the guide pair value.

 send P.chld_post_predecessor[i]. Each process P sends the value

chld_post_predecessor[i] to its children where i is the index of children. It is used

to calculate the guide pair value.

 send P.level. Each process P starting for root sends the level

values to its children.

 send P.(lev_guide). Each process P sends the triplet value lev_guide to

its parent.

 send P.(up_value) Each process P sends the value to its parent until it

reaches the root.

 send P.(desc_pkg) Starting from the root every process sends a triplet

value containing the value and guide pair to its children until the guide pair

matches the value of the nodes guide pair.

 send(status=0). Initially when the network has arbitrary initialization . If a

process P find the status of a process incorrect. Then P starts sending the message

send(status=0) to all its neighbours.

www.manaraa.com

51

 send(status=1). A new epoch is initiated by the Root by changing its status to 1

and it sends a message send(status=1) to all its children. This message will end

after reaching the leaf nodes.

 send(status=2). This message is initiated by the leaf nodes and it is send to its

parent. It ends after reaching the Root node. In this epoch all the rank order

processing is done.

 send(status=3). This message is initiated by the Root nodes when all the rank

processing is done by the and this message ends when it reaches the leaf nodes.

7.5 Explanation of LEVEL ORDER SORTING

 We now give an intuitive explanation of how the LEVEL ORDER SORTING

algorithm works in finding the sorted values which are sorted in level order. The sorting

will be done in phases. In the first phase values of the root i.e level value is .

set to zero , pre_order and post_order are set to 1. Root starts sending message level +1

to its children and this message will pass until it reaches the leaf nodes. Now each node

will have the level value i.e the distance from the root.

 After the computation of level for each node it should calculate the guide pair

value. LEVEL ORDER SORTING uses GUIDE algorithm for calculating the guide pair

values. For calculating the guide pair every node should calculate the subtreesize.

Starting from the leaf node every node sends a message subtreesize to its parent. Now

the guide pair for root pre_order and post_order are set to 1. P.chld_pre_predecessors[1]

is set to P.pre_index. For all other children P.chld_pre_predecessors[i] is set as

P.child_pre_predecessors[i-1] + P.child[i-1].subtreesize. Now every node will have its

www.manaraa.com

52

child_pre_predecessors[i] and this node sends a message child_pre_predecessors[i] to

its children matching its order. After each children receiving the message it calculates

pre_index i.e 1+P.parent.chld_pre_predecessors[P.my_order].

In the similar way it calculates the post_order. Now every node has the guide pair

calculated.

 Now lev_guide triplet is defined for each node it is the combination of level and

guide pair. This lev_guide is pipelined until it reaches the root. Starting from the leaf

node every node sends the message send lev_guide to its parent. Guard ensures that the

smaller will reaches node first and lev_guide triplet are ordered in lexical order. In

parallel we pipeline the values present at every until it reaches the root. Now root

combines lev_guide triplet and value to form a desc_pkg triplet. . P.desc_pkg, it is

descending triplet formed by combing the value and the lev_guide triple. For example, if

the value x.value reaches r at the same time as the level guide triple (y.level, y.preindex,

y.postindex), the descending triple (x.value, y.preindex, y.postindex) is created and then

descends until it reaches y. When it reaches y, the assignment y.sortvalue  x.value will

be executed. This traversed down the tree until it reaches its home process.

www.manaraa.com

53

7.6 LEVEL ORDER SORTING Algorithm Steps

A1 P=Leaf subtreesize = 1

 send P.subtreesize to P.Parent

A2 Q Cp receive Q.subtreesize

 P.receivedQ  True

A3 Q Cp Subtreesize(P)=1+ Q Cp Q.subtreesize

 if P.receivedQ = True

A4 P=Root P.pre_index  1

 P.post_index  1

 P.level  0

A5 Q Cp send P.level + 1

 Q receive P.level +1

A6 Q Cp P.chld_pre_predecessors[1]  P.pre_index

 Q.my_order is 1 send P.chld_pre_predecessors[1]

 P.chld_post_predecessors[P.num_chld]  P.post_index

 send P.chld_post_predecessor[P.num_child]

www.manaraa.com

54

A7 Q Cp P.chld_pre_predecessor[i] 

 Q.my_order is 2 i P.num_child P.child_pre_predecessors[i-1] +

 P.child[i-1].subtreesize

 send P. chld_pre_predecessor[i]

A8 Q Cp Receive

 P.parent.chld_pre_predecessors[P.my_order]

 Received Q = True

A9 received Q  True P.pre_index 

 1+P.parent.chld_pre_predecessors[P.my_order]

A10 1 i < P.num_child P.chld_post_predecessor[i] 

 P.child_post_predecessors[i+1] +

 P.child[i+1].subtreesize

 send P.chld_post_predecessor[i]

A11 Q Cp Receive

 P.parent.chld_post_predecessors[P.my_order]

 Received Q = True

A12 If received QTrue P.post_index

1+P.parent.chld_post_predecessors [P.my_order]

www.manaraa.com

55

A13 If Error(P), Then P.Status  0.

 Q nebrs(P) send(status=0)

 Q receive(status=0)

A14 If Root.status = 0 or 4 and Then Root.status

  1

 Chldrn(Root).Status = 0 or 4

 Root is set to Clean Slate.

 Q Chldrn(P) send(status=1)

 Q recieve(status=1)

A15 If P Root, P.Parent.status = 1 and Then P.receive

 Q Chldrn(P)

 P is set to clean slate

 Q.Status = 0 or 4

A16 P = leaf node, P Chldrn(Q) Then P.status  2

 If Q.status = P.status =1 P.send (status = 2)

 Q.recieve(status =2)

A17 If P.status = 1 and Q Chldrn(P) Q.send(status=2)

Q.status = 2

www.manaraa.com

56

 P recieve(status=2)

A18 P.status = 2 and Can_start(P) P.lev_guide.value

  P.value

 P.lev_guide.guide

  P.guide

 P.up_value 

 P.value

A19 If P.status = 2 and Can_Copy_Up(P,Q) Then

 P.lev_guide 

 Q Chldrn(P) Q.lev_guide

 send Q.(lev_guide)

 recieve P.(lev_guide)

 send Q.(up_value)

 recieve P.(up_value)

A20 If P.started = 1, lev_Redundant(P) = 1 Then

 and Q.lev_done = 1 P.lev_done  1

 Q Chldrn(P)

A21 If Desc_Ready(Root) , Then

 Root.up_Package Root.desc_pkg.value

www.manaraa.com

57

 Up_Redundant(Root)  Root.value

 Root.desc_pkg.guide

 Root.lev_guide.guide

A22 If P Root, Then P.desc_pkg 

 Desc_Ready(P), P.parent.desc_pkg

 P.parent.desc_package

 Desc_Redundant(P.parent)

 P.parent.desc_pkg.guide is

 consistent with P

 P Chldrn(Q) send Q.(desc_pkg)

 P recieve P.(desc_pkg)

A23 If P.desc_pkg Then P.sortvalue 

 P.desc_pkg.guide=P.guide P.desc_pkg.value

 P.desc_pkg.value P.rank

A24 If Root.lev_done, Then Root.status  3

 Desc_Ready(Root) and

 Root.value = Root.desc_pkg.value

A25 If P Root, and Then P.status  3

 P.parent.status = 3

www.manaraa.com

58

 Q Chldrn(P)

 P.status = 2

 Q.status = 2

 Desc_Ready(P)

 Z Parent(P) send(status=3)

 P receive(status=3)

A26 P = Leaf P.status  4

 P.Parent.status = 3

A27 If P.status = 3

 Q.Send(status=4)

 Q Chldrn(P) P.Recieve(status=4)

 Q.status = 4

www.manaraa.com

59

CHAPTER 8

CONCLUSION

 In this thesis we have developed different algorithms in message passing system

by considering different performance factors. When we consider the scalability factor as

the number of process in the network increases it can be handled easily in the message

passing system. The pre-processing overhead and the buffer can be avoided in this

system. The SUM algorithm can be used for combing the values present in the network

using commutative and associative operations and finding the minimum and maximum

values present in the network. The MEAN algorithm which is an extension of SUM

algorithm can be used for finding the mean of all the values present in the network. The

GUIDE algorithm can be used for finding the guide pair values which can be used for

computing the guide pair values. These guide pair values can be used of traversing the

tree. The RANK and LEVEL ORDER SORTING algorithms can be used to assigning

rank and sorting the nodes present in the network. Different strategies were used for

sorting the nodes in the tree.

www.manaraa.com

60

APPENDIX A

Diagrams of SUM

subtreesum

sumall

 V(p)=6

subtreesum

sumall

 V(p)=8

subtreesum

sumall

 V(p)=9

subtreesum

sumall

 V(p)=7

subtreesum

= 3

sumall

 V(p)=3

subtreesum

=4

sumall

 V(p)=4

subtreesum

=5

sumall

 V(p)=5

Initial configuration of the network with every node having the values V(P)

www.manaraa.com

61

 send P.subtreesum = 5 send P.subtreesum = 4

 send P.subtreesum = 3

subtreesum

= 3

sumall

 V(p)=3

subtreesum

=4

sumall

 V(p)=4

subtreesum

=5

sumall

V(p) = 5

 V(p)=5

subtreesum

sumall

 V(p)=6

subtreesum

sumall

 V(p)=7

subtreesum

sumall

 V(p)=9

subtreesum

sumall

 V(p)=8

 A converge cast wave starting from the leaf nodes starts sending the value V(P) which is

Subtreesum(P) to its parent.

www.manaraa.com

62

 send P.subtreesum = 11

 send P.subtreesum = 9

subtreesum

= 3

sumall

 V(p)=3

subtreesum

=4

sumall

 V(p)=4

subtreesum

=5

sumall

 V(p)=5

subtreesum

= 9

sumall

 V(p)=6

subtreesum =

11

sumall

 V(p)=7

subtreesum

sumall

 V(p)=9

subtreesum

sumall

 V(p)=8

A nodes waits until it receives all the values V(P) from its children and then calculates the

sum of all values along with its values and then it sends the value to its parent.

www.manaraa.com

63

 send P.subtreesum = 22

subtreesum

= 3

sumall

 V(p)=3

subtreesum

=4

sumall

 V(p)=4

subtreesum

=5

sumall

 V(p)=5

subtreesum

= 9

sumall

 V(p)=6

subtreesum

= 11

sumall

 V(p)=7

subtreesum

sumall

 V(p)=9

subtreesum

=22

sumall

 V(p)=8

After the node receiving the values from its children it calculates the value Subtreesum(P)

and send the value to its parent.

www.manaraa.com

64

 send P.sumall = 42 send P.sumall = 42

subtreesum

= 3

sumall

 V(p)=3

subtreesum

=4

sumall

 V(p)=4

subtreesum

=5

sumall

 V(p)=5

subtreesum

= 9

sumall

 V(p)=6

subtreesum

= 11

sumall

 V(p)=7

subtreesum

=42

sumall=42

 V(p)=9

subtreesum

=17

sumall

 V(p)=8

After the Root receiving the values from all its children it calculates the value sumall(P)

and send the value to all its children.

www.manaraa.com

65

 send P.sumall = 42 send P.sumall = 42 send P.sumall = 42

subtreesum

= 3

sumall

 V(p)=3

subtreesum

=4

sumall

 V(p)=4

subtreesum

=5

sumall

 V(p)=5

subtreesum

= 9

sumall

 V(p)=6

subtreesum

= 11

sumall=42

 V(p)=7

subtreesum

=42

sumall=42

 V(p)=9

subtreesum

=17

sumall=42

 V(p)=8

The broadcast wave of sending sumall(P) continues until it reaches the leaf nodes.

www.manaraa.com

66

send P.sumall = 42

subtreesum

= 3

sumall = 42

 V(p)=3

subtreesum

=4

sumall = 42

 V(p)=4

subtreesum

=5

sumall = 42

 V(p)=5

subtreesum

= 9

sumall =42

 V(p)=6

subtreesum

= 11

sumall =42

 V(p)=7

subtreesum

=42

sumall =42

 V(p)=9

subtreesum

=17

sumall =42

 V(p)=8

Now all the nodes in the tree has the value sumall(P).

www.manaraa.com

67

APPENDIX B

 Diagrams of MEAN

 send P.subtreesum = 5 send P.subtreesum = 5
 send P.subtreesize = 1 send P.subtreesize = 1

 send P.subtreesum = 3

 send P.subtreesize = 1

subtreesum

sumall

subtreesize

meanvalue

 V(p)=9

subtreesum

sumall

subtreesize

meanvalue

 V(p)=8

subtreesum

sumall

subtreesize

meanvalue

 V(p)=7

Subtreesum(P) = 4

sumall

subtreesize = 1

meanvalue

 V(p)=4

subtreesum = 5

sumall

subtreesize = 1

meanvalue

 V(p)=5

subtreesum

sumall

subtreesize

meanvalue

 V(p)=6

subtreesum = 3

sumall

subtreesize = 1

meanvalue

 V(p)=3

Initial configuration of the network with a convercast wave starting from the leaf nodes and

sending the values Subtreesum and Subtreesize to its parent.

www.manaraa.com

68

 send P.subtreesum = 11

 send P.subtreesize = 2

 send P.subtreesum = 9
 send P.subtreesize = 2

subtreesum = 3

sumall

subtreesize = 1

meanvalue

 V(p)=3

subtreesum = 4

sumall

subtreesize = 1

meanvalue

 V(p)=4

subtreesum = 5

sumall

subtreesize = 1

meanvalue

 V(p)=5

subtreesum =9

sumall

subtreesize =2

meanvalue

 V(p)=6

subtreesum =11

sumall

subtreesize =2

meanvalue

 V(p)=7

subtreesum

sumall

subtreesize

meanvalue

 V(p)=9

subtreesum

sumall

subtreesize

meanvalue

 V(p)=8

A nodes waits until it receives all the values P.subtreesum and P.subtreesize from its children and

then calculates the sum of all values along with its values and then it sends the value to its parent.

www.manaraa.com

69

 send P.subtreesum = 22

 send P.subtreesize = 4

subtreesum = 3

sumall

subtreesize = 1

meanvalue

 V(p)=3

subtreesum = 4

sumall

subtreesize = 1

meanvalue

 V(p)=4

subtreesum = 5

sumall

subtreesize = 1

meanvalue

 V(p)=5

subtreesum =9

sumall

subtreesize =2

meanvalue

 V(p)=6

subtreesum =11

sumall

subtreesize =2

meanvalue

 V(p)=7

subtreesum

sumall

subtreesize

meanvalue

 V(p)=9

subtreesum =22

sumall

subtreesize =4

meanvalue

 V(p)=8

After the node receiving all the values from its children it calculates the value P.subtreesum and

P.subtreesize and send the value to its parent.

www.manaraa.com

70

subtreesum = 3

sumall

subtreesize = 1

meanvalue

 V(p)=3

subtreesum = 4

sumall

subtreesize = 1

meanvalue

 V(p)=4

subtreesum = 5

sumall

subtreesize = 1

meanvalue

 V(p)=5

subtreesum =9

sumall

subtreesize =2

meanvalue

 V(p)=6

subtreesum =11

sumall

subtreesize =2

meanvalue

 V(p)=7

subtreesum =42

sumall=42

subtreesize =7

meanvalue=6

 V(p)=9

subtreesum =22

sumall

subtreesize =4

meanvalue

 V(p)=8

After the Root receiving all the values from its children it calculates the Mean value.

www.manaraa.com

71

 send P.meanvalue = 6 send P.meanvalue = 6

subtreesum = 3

sumall

subtreesize = 1

meanvalue

 V(p)=3

subtreesum = 4

sumall

subtreesize = 1

meanvalue

 V(p)=4

subtreesum = 5

sumall

subtreesize = 1

meanvalue

 V(p)=5

subtreesum =9

sumall

subtreesize =2

meanvalue

 V(p)=6

subtreesum =11

sumall

subtreesize =2

meanvalue

 V(p)=7

subtreesum =42

sumall=42

subtreesize =7

meanvalue=6

 V(p)=9

subtreesum =22

sumall

subtreesize =4

meanvalue

 V(p)=8

Root sends the mean value to all its children by starting a broadcast wave.

www.manaraa.com

72

 send P.meanvalue = 6 send P.meanvalue = 6 send P.meanvalue = 6

subtreesum = 3

sumall

subtreesize = 1

meanvalue

 V(p)=3

subtreesum = 4

sumall

subtreesize = 1

meanvalue

 V(p)=4

subtreesum = 5

sumall

subtreesize = 1

meanvalue

 V(p)=5

subtreesum =9

sumall

subtreesize =2

meanvalue

 V(p)=6

subtreesum =11

sumall

subtreesize =2

meanvalue=6

 V(p)=7

subtreesum =42

sumall=42

subtreesize =7

meanvalue=6

 V(p)=9

subtreesum =22

sumall

subtreesize =4

meanvalue=6

 V(p)=8

Broadcast wave of sending the mean value to its children continues until it reaches the leaf

nodes.

www.manaraa.com

73

 send P.meanvalue = 6

subtreesum = 3

sumall

subtreesize = 1

meanvalue=6

 V(p)=3

subtreesum = 4

sumall

subtreesize = 1

meanvalue=6

 V(p)=4

subtreesum = 5

sumall

subtreesize = 1

meanvalue=6

 V(p)=5

subtreesum=9

sumall

subtreesize =2

meanvalue=6

 V(p)=6

subtreesum =11

sumall

subtreesize=2

meanvalue=6

 V(p)=7

subtreesum =42

sumall=42

subtreesize =7

meanvalue=6

 V(p)=9

subtreesum =22

sumall

subtreesize=4

meanvalue=6

 V(p)=8

After the broadcast wave reaches the leaf node all the node in the tree has the mean value.

www.manaraa.com

74

APPENDIX C

Diagrams of GUIDE Algorithm

This is the initial configuration of the network

www.manaraa.com

75

Root has assigned the guide pair value (1,1)

www.manaraa.com

76

Root calculated the pre and post predecessors of its children and forwarded the to their

children

www.manaraa.com

77

Roots children calculates the guide pair values and send the values to its children

www.manaraa.com

78

Node (16,3) computes the guide pair values and sends the pre and post predecessor values

to its children

www.manaraa.com

79

Node (17,39), (18,27), (30,24) computes the guide pair values and sends the pre and post

predecessor values to their children

www.manaraa.com

80

All the nodes have the guide pair values.

www.manaraa.com

81

APPENDIX D

DIAGRAMS OF RANK

Initial configuration of the network at the beginning of an epoch

www.manaraa.com

82

The three leaf processes, P(2,6), P(5,5) and P (6,3) starts their up-packages. P4,4 must wait until it is

sure that all packages with smaller weights have been sent.

www.manaraa.com

83

Only one package sends the up_pkg to its parent and the rest are blocked as they don't know

if they are smallest or not.

www.manaraa.com

84

The package whose home process is P5,5 sends its up_pkg up. P4,4 is redundant now.

www.manaraa.com

85

P4,4 makes its up_pkg ready . Root has received the first up-package, and thus it will

assign rank 1 to the process P5,5

www.manaraa.com

86

The up-package whose home is P4,4 is still at P4,4, and cannot be send to its parent, since there is

another up-package in the way. Root creates the first down-package, in this step; counter

increments to 1, and the new down-package carries value 1, indicating that P5,5 has the smallest

weight.

www.manaraa.com

87

The P4,4.up pkg still cannot be sent up, because P6,3 has sent its up_pkg to the

process P3,2 . The down_pkg whose home is P5,5 is sent down to P3,2.

www.manaraa.com

88

The up_pkg whose home is P4,4 still cannot send it up. P3,2 send its down_pkg to the process

P4,4

www.manaraa.com

89

The down_pkg whose homes are P2,6 and P5,5 are sent to their home processes. The

up_pkg whose home is P4,4 is still stuck at P4,4.

www.manaraa.com

90

The up_pkg whose home is P4,4 sends it to process P3,2. To indicate that there are no

more active up-packages in its subtree, P4,4.up_done changes to 1. P2,6 and P5,5 copy

their values of rank from their down-packages.

www.manaraa.com

91

The up_pkg whose home P4,4 is now stuck at P3,2.

www.manaraa.com

92

The up-package whose home is P4,4 is still stuck at P2,3. The process P3,2 sends the

down_pkg to its home process which is P6,3.

www.manaraa.com

93

The up_pkg whose home is P4,4 is sent to Root by the process P3,2.

www.manaraa.com

94

Root creates the down_pkg whose home process is P4,4.

www.manaraa.com

95

The down_pkg whose home is P4,4 is sent to P2,3 by the Root.

www.manaraa.com

96

The down_pkg whose home is P4,4 is sent to P4,4 by P3,2.

www.manaraa.com

97

Process P4,4 assigns rank to itself from its down_pkg.

www.manaraa.com

98

Now all the nodes in the tree has its rank values.

www.manaraa.com

99

APPENDIX E

Diagrams of LEVEL ORDER SORTING

 Initial configuration of the network at the beginning of and epoch

www.manaraa.com

100

The three leaf processes, P2,6, P5,5 and P6,3 starts their lev_guide and up_value. P4,4 must

until it is sure that all packages with smaller weights have been sent up.

www.manaraa.com

101

Only one process sends the up_value to its parent and the rest are blocked as they don't

know which is the smallest value. The process P4,4 makes its lev_guide value ready.

www.manaraa.com

102

The package whose home process is P5,5 sends its up_value up. P4,4 is redundant now.

The process P3,2 makes its lev_guide value ready.

www.manaraa.com

103

The package whose home process is P5,5 sends its up_pkg up to the root. The root

creates it lev_guide value.

www.manaraa.com

104

The Root creates the desc_pkg value.

www.manaraa.com

105

The Root assigns a value to its sorted value. P2,6 sends its up_value, lev_guide values to

its parent.

www.manaraa.com

106

The Root creates desc_pkg value for the process P2,6.

www.manaraa.com

107

P2,6 recieves its desc_pkg value. P3,2 sends its up_value and lev_guide values to the

Root.

www.manaraa.com

108

P2,6 assigns the value to sorted value from its desc_pkg. Root creates a desc_pkg

value for the process P3,2.

www.manaraa.com

109

P3,2 recieves its desc_pkg and sends the lev_guide value to the Root.

www.manaraa.com

110

P3,2 assigns its sorted value from its decs_pkg. Root creates a desc_pkg value for

the process P4,4

www.manaraa.com

111

Root receives lev_guide value whose home process is P5,5 and up_value from P3,2 .

Root sends desc_pkg value whose home process is P4,4.

www.manaraa.com

112

Root creates desc_pkg P5,5.

www.manaraa.com

113

P3,2 sends its up_value and desc_pkg to the Root. Root send desc_pkg whose home

process is P5,5

www.manaraa.com

114

Root generates desc_pkg value for the process P6,3. P3,2 sends its desc_pkg to its child P4,4

www.manaraa.com

115

Root sends desc_pkg value for the process P6,3. P5,5 receives its desc_pkg.

www.manaraa.com

116

P5,5 assigns value to its sorted value from its desc_pkg value. P6,3 receives its desc_pkg

value.

www.manaraa.com

117

Finally all the process in the tree has its sorted values.

www.manaraa.com

118

BIBILOGRAPHY

[1] Dr. Ajoy K. Datta and Dr. Lawrence L. Larmore , Some Problems on a Rooted Tree

 Network.

[2] Rafael B Avila and Caciano Mochodo, Message Passing over Shared Memory.

[3] Angela C.Sodan, Message Passing over Shared Memory programming models.

www.manaraa.com

119

VITA

Graduate College

University of Nevada, Las Vegas

Sabaresh N Maddula

Home Address :

 1555 E Rochelle Ave, #Apt 252,

 Las Vegas, Nevada - 89119

 Degrees:

 Bachelor of Science in Computer Science, 2006

 Jawaharlal Nehru University, Hyderabad

Thesis Title: Message Passing Algorithms for different problems Sum, Mean, Guide and

Sorting in a rooted tree network.

Thesis Examination Committee:

Chair Person, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. Lawrence L. Larmore,Ph.D.

Committee Member, Dr. Ju-Yeon Jo, Ph.D.

Committee Member, Dr. Emma Regentova, Ph.D.

